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Abstract
Using the technique of integration within an ordered product of operators we
construct operator Fredholm equations, which can help us to re-formulize the
Weyl correspondence and P-representation. We then search for their solutions
which present new formulae for deriving quantum operators’ Weyl classical
correspondence and P-representation. As the application, we deduce some new
relations about the two-variable Hermite polynomials.

PACS numbers: 03.65.Bz, 42.50.Dv

1. Introduction

Dirac’s ket–bra operators are basic blocks in quantum representation theory [1]. By
considering ket versus bra as special mathematical symbols that include non-commutative
operators, in a recent paper (2006 Ann. Phys. 321 480) [2] we have summarized the technique
of integration within an ordered product (IWOP) of operators which enables Newton–Leibniz
integration rules directly working for Dirac’s ket–bra operators with continuum variables. For
instance, using the coordinate eigenstate

|q〉 = π−1/4 exp

(
−q2

2
+

√
2qa† − a†2

2

)
|0〉, (1)

where a† is the creation operator, |0〉 is the vacuum state annihilated by a, and Q|q〉 = q|q〉,
and the normally ordered form of vacuum projector |0〉〈0| =: e−a†a :, we can directly perform
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the integration

S1 ≡
∫ ∞

−∞

dq√
µ

∣∣∣∣ q

µ

〉
〈q| =

∫ ∞

−∞

dq√
πµ

exp

(
− q2

2µ2
+

√
2

q

µ
a† − a†2

2

)
|0〉〈0|

× exp

(
−q2

2
+

√
2qa − a2

2

)

=
∫ ∞

−∞

dq√
πµ

: exp

(
−q2

2

(
1 +

1

µ2

)
+

√
2q

(
a†

µ
+ a

)
− 1

2
(a + a†)2

)
:

= (sech λ)1/2 e− a†2
2 tanh λ : e(sech λ−1)a†a : e

a2

2 tanh λ, µ = eλ. (2)

Note that a commutes with a† within : :, so a† and a can be considered as if they were
parameters while the integration is performed. Equation (2) is just the single-mode squeezing
operator in normal ordering appearing in many references [3, 4]. It inspires a physical
interpretation of some of the mathematical quantities employed in the theory: the classical
dilation q → q

µ
maps into the normally ordered squeezing operator manifestly. It also exhibits

that the fundamental representation theory can be formulated in not so abstract a way, as we
can now directly perform the integral over ket–bra projection operators. Moreover, the IWOP
technique can be employed to perform many complicated integrations for ket–bra projection
operators.

In particular, for µ = 1, equation (2) becomes the normally ordered Gaussian form∫ ∞

−∞
dq|q〉〈q| =

∫ ∞

−∞

dq√
π

: exp

(
−q2 + 2q

(
a + a†
√

2

)
− 1

2
(a + a†)2

)
:

=
∫ ∞

−∞

dq√
π

: e−(q−Q)2
:= 1, (a real simple Gaussan integration!) (3)

where Q = a+a†√
2

, [a, a†] = 1. In this work we shall show how the IWOP technique can
help us to set up the normally ordered operator Fredholm equation [5] for Weyl–Wigner
correspondence [6, 7] and P-representation [8, 9], respectively. We then search for these
equations’ solutions which present new formulae for deriving quantum operators’ Weyl
classical correspondence and P-representation. To illustrate what is a normally ordered
operator Fredholm equation we take an example,

1√
π

∫ ∞

−∞
dq : e−(q−Q)2

: ϕ(q) =: f (Q) :, (4)

in which the normally ordered operator : exp[−(q − Q)2] : is as an integral kernel. On the
other hand, using (3) we have

1√
π

∫ ∞

−∞
dq : e−(q−Q)2

: ϕ(q) =
∫ ∞

−∞
dq|q〉〈q|ϕ(q) = ϕ(Q). (5)

Comparing (4) and (5) we know the normally ordered expansion of ϕ(Q) is

ϕ(Q) =: f (Q) :. (6)

This is a new way to normally ordered expanding of an operator. We now search for the
solution to the Fredholm equation (4); substituting the following expansions

: e−(q−Q)2
:= e−q2

∞∑
n=0

: Hn(q)
Qn

n!
:, ϕ(q) =

∞∑
m=0

bmHm(q), (7)

where

Hn(q) = 2n

[n/2]∑
k=0

(−1)kn!

22kk!(n − 2k)!
qn−2k
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is the single-variable Hermite polynomials, into (4) we have

1√
π

∞∑
n,m=0

∫ ∞

−∞
dq : e−q2

Hn(q)Hm(q)
Qn

n!
bm :=

∞∑
m=0

2mbm : Qm :=: f (Q) :. (8)

Taking the coherent state expectation value for (8), we see
∞∑

m=0

2mbm〈z| : Qm : |z〉 =
∞∑

m=0

2mbm(
√

2x)m

= 〈z| : f (Q) : |z〉 = f (
√

2x), z = x + iy, (9)

where |z〉 = exp[−|z|2/2+za†]|0〉 is the coherent state [8, 10]. After differentiating both sides
of (9) m times with respect to

√
2x and then setting x = 0, we obtain f (m)(0) = m!2mbm;

thus

ϕ(q) =
∞∑

n=0

f (n)(0)

2nn!
Hn(q) (10)

and

ϕ(Q) =: f (Q) :=
∞∑

n=0

f (n)(0)

2nn!
Hn(Q). (11)

For instance, when in (4) : f (Q) :=: Qn :, we see f (m)(0) = δn,mm!, so

: Qn :=
∞∑

m=0

δn,mm!

2mm!
Hm(Q) = 1

2n
Hn(Q), (12)

so : 2nQn : is the normally ordered expansion of Hn(Q), which is an easily remembered
operator formula. Equation (12) has many advantages in dealing with the properties of
Hermite polynomials since : Qn : is more readily handled than Hn(Q). For example, we can
use (12) to easily check the generating function formula of Hermite polynomials

∞∑
n=0

tn

n!
Hn(Q) =

∞∑
n=0

(2t)n

n!
: Qn :=: e2tQ :=: e

√
2t (a+a†) := e2tQ−t2

. (13)

Having experienced the simplest operator Fredholm equation (4) we, in section 2, shall set up
operator Fredholm equations for Weyl correspondence and P-representation, respectively; as
one can see later, in this way we can re-formulize these two theories and derive some new
operator identities.

2. Operator Fredholm equation with use of : e−2(α∗−a†)(α−a) :

The Weyl correspondence rule [6] is a recipe for the quantization of functions defined in
classical phase space. According to this rule, a classical function h (q, p) corresponds to its
quantum operator H(Q,P ) by the relation

H(Q,P ) =
∫ ∫ ∞

−∞
dq dp�(q, p)h(q, p), (14)

where the operators H,P and Q correspond to the classical quantities h, p and q, respectively,
the Wigner operator �(p, q) is the integral kernel of the quantization scheme [7],

�(p, q) = 1

2π

∫ ∞

−∞
du eipu

∣∣∣q − u

2

〉 〈
q +

u

2

∣∣∣ , (15)
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where the state
∣∣q − u

2

〉
is given by (1). Similarly to what we have done for (2), using the

IWOP technique we perform the integral in (15) to yield its explicit Gaussian form [11]

�(p, q) = 1

π
: e−(p−P)2−(q−Q)2

:, (16)

where the momentum operator P is related to Bose operators by P = 1
i
√

2
(a−a†). Equation (16)

immediately leads to the correct marginal distributions
∫ ∞
−∞ dp� (q, p) = 1√

π
: e−(q−Q)2

:=
|q〉〈q| and

∫ ∞
−∞ dq�(q, p) = 1√

π
: e−(p−P)2

:= |p〉〈p|, where |p〉 is the momentum
eigenvector. Due to

2π Tr[�(q, p)�(q ′, p′)] = δ(q − q ′)δ(p − p′), (17)

it follows that

h(q, p) = 2π Tr[�(q, p)H(Q,P )], (18)

which is the usual formula to derive the classical Weyl correspondence of H(Q,P ).

Now we recast the Weyl correspondence theory into a new formalism, i.e., we construct
an operator Fredholm equation for the Weyl correspondence and then search for its solution.
In this way some properties of the two-variable Hermite polynomials can be directly derived.

Letting α = (q + ip)/
√

2, equation (16) becomes

1

π
: e−(p−P)2−(q−Q)2

:= 1

π
: e−2(α∗−a†)(α−a) :≡ �(α, α∗), (19)

writing h(q, p) ≡ g(α, α∗), then the Weyl correspondence (14) takes another form,

H(Q,P ) → G(a, a†) = 2
∫

d2α�(α, α∗)g(α, α∗)

= 2

π

∫
d2α : e−2(α∗−a†)(α−a) : g(α, α∗). (20)

When we perform the integration within : : in (20) with the result

G(a, a†) =: F(a, a†) :, (21)

then we set up

2

π

∫
d2α : e−2(α∗−a†)(α−a) : g(α, α∗) =: F(a, a†) :, (22)

which is a normally ordered integration equation (the Fredholm equation of the first kind [5]
with the kernel being : e−2(α∗−a†)(α−a) :). Instead of using (18) we aim to derive g(α, α∗) from
the given normally ordered operator : F(a, a†) : by solving equation (22). The advantage
in doing so lies in that some new relations about the two-variable Hermite polynomials can
naturally be deduced.

3. New formula for deriving Weyl’s classical correspondence

In [12] we have shown that the generalized Bargmann representation of the two-mode number
state |m, n〉 is

|m, n〉 = a†mb†n
√

m!n!
|00〉 → 1√

m!n!
Hm,n(ξ, ξ ∗) e− 1

2 |ξ |2 , (23)
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where Hm,n(ξ, ξ ∗) is the two-variable Hermite polynomial [13]

Hm,n(ξ, ξ ∗) =
min(m,n)∑

l=0

m!n!

l!(m − l)!(n − l)!
(−1)lξm−lξ ∗n−l ,

(24)
[Hm,n(ξ, ξ ∗)]∗ = Hm,n(ξ

∗, ξ) = Hn,m(ξ, ξ ∗),

which is not a direct product of two independent single-variable Hermite polynomials. We
say that Hm,n(ξ, ξ ∗) is the basis of the generalized Bargmann space because it spans an
orthonormal and complete function space,

2
∫ ∫

d2ξ

π
e−2|ξ |2Hm,n(

√
2ξ,

√
2ξ ∗)[Hm′,n′(

√
2ξ,

√
2ξ ∗)]∗ =

√
m!n!m′!n′!δm,m′δn,n′ , (25)

so we can expand

g(α, α∗) =
∞∑

m,n=0

Cm,nH
∗
m,n(

√
2α,

√
2α∗), (26)

where Cm,n is the expansion coefficient to be determined. On the other hand, using the
generating function of Hm,n(λ, λ∗),

∞∑
m,n=0

tmt ′n

m!n!
Hm,n(λ, λ∗) = exp{−t t ′ + tλ + t ′λ∗}, (27)

or Hm,n(λ, λ∗) = ∂m

∂tm

∂n

∂t ′n
exp{−t t ′ + tλ + t ′λ∗}|t=t ′=0, (28)

we can expand the normally ordered form of �(α, α∗) in (19) as

�(α, α∗) = 1

π
e−2|α|2 :

∞∑
m,n=0

(
√

2a†)m(
√

2a)n

m!n!
Hm,n(

√
2α,

√
2α∗) :

= 1

π
e−2|α|2 :

∞∑
m,n=0

√
2(m+n)

a†man

m!n!
Hm,n(

√
2α,

√
2α∗) :. (29)

Substituting (26) and (29) into the normally ordered Fredholm equation (22) and using (25)
we have

(22) =
∫

2d2α

π
e−2|α|2 :

∞∑
m,n=0

√
2(m+n)

a†man

m!n!
Hm,n(

√
2α,

√
2α∗)

× :
∞∑

m′,n′=0

Cm′,n′H ∗
m′,n′(

√
2α,

√
2α∗)

=:
∞∑

m,n=0

Cm,n

√
2(m+n)a†man :=: F(a, a†) :. (30)

Taking the coherent state expectation values of (30), we see

〈z| :
∞∑

m,n=0

Cm,n

√
2(m+n)a†man : |z〉 = 〈z| : F(a, a†) : |z〉, (31)

which is
∞∑

m,n=0

Cm,n

√
2(m+n)z∗mzn = F(z, z∗), (32)
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so

Cm,n = ∂m∂n

√
2(m+n)m!n!∂z∗m∂zn

F (z, z∗)|z=0. (33)

Substituting (33) into (26) we obtain the solution of the Fredholm equation when 〈z| :
F(a, a†) : |z〉 = F(z, z∗) is known,

g(α, α∗) =
∞∑

m,n=0

1

m!n!
√

2(m+n)
H ∗

m,n(
√

2α,
√

2α∗)
∂m

∂z∗m

∂n

∂zn
F (z, z∗)|z=0. (34)

This is a new formula for deriving Weyl’s classical correspondence of normally ordered
quantum operators. For example, when : F1(a, a†) := a†man, from (34) we have

g1(α, α∗) = 1√
2(m+n)

H ∗
m,n(

√
2α,

√
2α∗). (35)

So (22) takes the form

2

π

∫
d2α : e−2(α∗−a†)(α−a) : H ∗

m,n(
√

2α,
√

2α∗) =
√

2(m+n)a†man, (36)

which enlightens us to obtain a new integration formula about Hm,n,∫
d2ξ

π
e−(ξ∗−ς∗)(ξ−ς)H ∗

m,n(ξ, ξ ∗) = (ς∗)mςn. (37)

This is a non-trivial generalization of the mathematical formula [14, 18]∫ ∞

−∞
dx e−(x−y)2

Hn(x) = √
π(2y)n. (38)

Thus we know the Weyl correspondence of a†man is 1√
2m+n

H ∗
m,n(

√
2α,

√
2α∗),

1√
2m+n

H ∗
m,n(

√
2α,

√
2α∗) = 2π Tr[a†man�(α, α∗)]. (39)

The correctness of (34) can be confirmed by substituting (34) into the Weyl correspondence
formula (22), which exhibits

∞∑
m,n=0

1

m!n!
√

2m+n

∫
2d2α

π
: e−2(α∗−a†)(α−a) : H ∗

m,n(
√

2α,
√

2α∗)

× ∂m

∂z∗m

∂n

∂zn
F (z, z∗)|z=0 =: F(a, a†) :, (40)

and then using (37) we see that the left-hand side of (40) becomes
∞∑

m,n=0

1

m!n!
: a†man :

∂m

∂z∗m

∂n

∂zn
F (z, z∗)|z=0

= : exp

{
a† ∂

∂z∗ + a
∂

∂z

}
: F(z, z∗)|z=0 =: F(a, a†) :, (41)

the right-hand side means that an operator’s coherent state expectation value F(z, z∗) can
decide the operator itself, which is a known result [15, 16], since the coherent states are
overcomplete. Hence the solution (35) is correct.

As a by-product, we see that Weyl correspondence (20)–(21) can be recast into the form
(41), which seems new.
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3.1. P-representation as an operator Fredholm equation—deriving P(z) from ρ

Glauber [8] and Sudarshan [9] used the overcomplete set of coherent state |z〉 [10] to introduce
the diagonal representation of the density matrix

ρ(a, a†) =
∫

d2z

π
P (z)|z〉〈z|. (42)

Though the P(z) function (named as P-representation) has found widespread applications in
quantum optics, it cannot be interpreted as a genuine probability distribution because it may
take on negative values or become highly singular. The reverse relation of (42) is Mehta’s
formula [17]

P(z) = 1

π
e|z|2

∫
〈−β| ρ |β〉 exp[|β|2 − βz∗ + β∗z] d2β, (43)

where |β〉 is also a coherent state. In this section, using |z〉〈z| =: exp[−(z∗ − a†)(z − a)] :,
we can rewrite (42) as

ρ(a, a†) =
∫

d2z

π
P (z) : exp[−(z∗ − a†)(z − a)] :, (44)

i.e., the density matrix is a Gaussian convolution of the P function within : :. When we perform
the integration within : : in (44) and find its result,

ρ(a, a†) =: F(a, a†) :, (45)

then we can have
1

π

∫
d2α : exp[−(α∗ − a†)(α − a)] : P(α) =: F(a, a†) :, (46)

which is a normally ordered Fredholm equation of the first kind with the kernel :
e−(α∗−a†)(α−a) :. We aim to derive P(α) from the given operator : F(a, a†) : by solving
equation (46).

For this purpose, we expand the P function as

P(α) =
∞∑

m,n=0

C ′
m,nH

∗
m,n(α, α∗), (47)

where C ′
m,n is the expansion coefficient to be determined. On the other hand, using (27), we

can expand : e−(α∗−a†)(α−a) : as

: e−(α∗−a†)(α−a) :=: e−|α|2
∞∑

m,n=0

a†man

m!n!
Hm,n(α, α∗) :. (48)

Substituting (47) and (48) into equation (46) and using (25) we have

(45) →:
∫

d2α

π
e−|α|2

∞∑
m,n=0

a†man

m!n!
Hm,n(α, α∗)

∞∑
m′,n′=0

C ′
m′,n′H

∗
m′,n′(α, α∗) :

=
∞∑

m,n=0

C ′
m,n : a†man := ρ(a, a†). (49)

Taking the coherent state expectation values of (49) we see

〈z| :
∞∑

m,n=0

C ′
m,na

†man : |z〉 = 〈z| : F(a, a†) : |z〉 (50)
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which is
∞∑

m,n=0

C ′
m,nz

∗mzn = F(z, z∗), (51)

so

C ′
m,n = ∂m∂n

m!n!∂z∗m∂zn
F (z, z∗)|z=0. (52)

Substituting (52) into (47) we obtain the solution of Fredholm equation when 〈z| : F(a, a†) :
|z〉 = F(z, z∗) is known,

P(α) =
∞∑

m,n=0

1

m!n!
H ∗

m,n(α, α∗)
∂m

∂z∗m

∂n

∂zn
F (z, z∗)|z=0, (53)

or using (27), we have

P(α) = exp

{
− ∂2

∂z∂z∗ + α∗ ∂

∂z∗ + α
∂

∂z

}
F(z, z∗)|z=0. (54)

This is a new formula for deriving the P function when F(z, z∗) is known, which differs from
(43). For example, when ρ = a†man =: a†man :, from (53) we see

P(α) = H ∗
m,n(α, α∗) (55)

which implies that the anti-normally ordered expansion of a†man is

...H ∗
m,n(a, a†)

... = a†man, (56)

where
...
... denoted anti-normally ordering. For another example, when ρ is a pure coherent

state |γ 〉〈γ |, using (53) and (27) and 〈z|γ 〉〈γ |z〉 = e−(z∗−γ ∗)(z−γ ) we have

P(α) =
∞∑

m,n=0

1

m!n!
H ∗

m,n(α, α∗)
∂m

∂z∗m

∂n

∂zn
e−(z∗−γ ∗)(z−γ )|z=0

= e−γ ∗γ
∞∑

m,n=0

1

m!n!
H ∗

m,n(α, α∗)Hm,n(γ, γ ∗). (57)

Using another completeness relation regarding the two-variable Hermite polynomials
∞∑

m,n=0

1

m!n!
H ∗

m,n(α, α∗)Hm,n(γ, γ ∗) = πδ(γ ∗ − α∗)δ(γ − α) eγ ∗γ , (58)

we know that the P-representation of |γ 〉〈γ | is P(α) = πδ(γ ∗ − α∗)δ(γ − α), as expected.
Note that equation (58) can also be derived by using the integration form of Hm,n(α, α∗) [16].

To sum up, using the IWOP technique we have constructed the operator Fredholm
equations for Weyl correspondence and P-representation; we then derive their solutions which
provide a new formula for deriving Weyl’s classical correspondence and P-representation. In
this way, some properties of the two-variable Hermite polynomials can easily be derived. We
wish this paper can enrich the fundamental representation theory of the quantum light field, as
readers might see that using two-variable (multi-variable) Hermite polynomials the bipartite
(multi-particle) entangled state representation can be constructed; thus one has the possibility
of having a statistical description of an electromagnetic field in terms of various entangled
state representations.
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